Le gaz de schiste est présent dans les « schistes » argileux sédimentaires, également appelés « shale » au Canada, le terme lithologique approprié concernant la roche en tant que telle étant argilite ou parfois siltite, selon la granulométrie. En effet, en géologie, le mot schiste désigne plus proprement des roches métamorphiques. Le gaz de schiste est produit depuis des années (gaz conventionnel) dans des schistes fracturés naturellement, mais la matrice rocheuse des schistes présente une faible perméabilité. L’exploitation commerciale à grande échelle nécessite donc une fissuration artificielle de la roche pour en augmenter la perméabilité ; l’essor du gaz de schiste ces dernières années a été stimulé par l’utilisation à grande échelle de la technique de fracturation hydraulique. Le taux de récupération possible est de l’ordre de 20 à 40 %.

Les schistes qui ont un potentiel économique de production gazière partagent un certain nombre de caractéristiques ; ils sont riches en matière organique (0,5 % à 25 %), et sont habituellement des roches sources pétrolières à l’origine de gaz thermogéniques (l’action de la chaleur et les pressions élevées convertissent le pétrole en gaz naturel). Ces schistes doivent être assez fragiles et assez rigides pour se fracturer et maintenir les fractures ouvertes. Dans certaines régions, les couches schisteuses à fort rayonnement gamma naturel sont réputées plus productives : un niveau élevé de rayonnement gamma est souvent corrélé à une forte teneur en carbone organique. Ce sont souvent des schistes gris foncés, éventuellement carbonés et calcaires.

Une partie du gaz provient des fractures naturelles, le reste étant piégé dans les pores ou absorbé dans la matière organique. Le gaz libre des fractures est immédiatement accessible ; le reste n’est libéré que plus lentement et sous la pression créée via le puits et avec l’aide d’additifs chimiques.

Le procédé commun s’appuie sur le forage dirigé (souvent horizontal), associé à la fracturation hydraulique, d’un grand nombre de puits. Le forage directionnel consiste à forer non pas verticalement, mais à une profondeur et un angle qui permettent au puits de rester confiné dans la zone potentiellement productrice, comme le montre le schéma ci-dessus. La fracturation hydraulique consiste à provoquer un grand nombre de micro-fractures dans la roche contenant le gaz, permettant à celui-ci de se déplacer jusqu’au puits afin d’être récupéré en surface. La fracturation est obtenue par l’injection d’eau à haute pression dans la formation géologique, autour du point d’injection.

On ajoute des additifs dans l’eau afin d’améliorer l’efficacité de la fracturation :

  • du sable de granulométrie adaptée, qui va s’insinuer dans les micro-fractures et empêcher qu’elles se referment ;
  • des biocides destinés à réduire la prolifération bactérienne dans le fluide et dans le puits ;
  • des lubrifiants qui favoriseront la pénétration du sable dans les micro-fractures ouvertes par la pression de l’eau ;
  • des détergents qui augmentent la désorption du gaz et donc la productivité des puits.

La multitude de puits forés en fait une technique inadaptée aux milieux urbanisés.

Les méthodes d’extraction des hydrocarbures de roche-mère actuellement employées sont anciennes: le forage horizontal est généralisé depuis les années 1980, et les débuts de la fracturation hydraulique remontent à 1948. Plus de 10 000 fracturations sont effectuées chaque année dans le monde, y compris pour la géothermie ou la production d’eau potable. Selon des professionnels[réf. nécessaire], le coût total d’un seul forage s’élèverait entre 8 à 10 millions de dollars dont 40 à 50 % pour la plateforme de forage, 8 à 10 % pour l’acquisition des tubes et coffrages et 30 à 40 % pour la fracturation hydraulique.

Une nouvelle technique, la fracturation par arcs électriques[réf. souhaitée], consiste à envoyer des ondes de chocs électriques afin de fracturer la roche, mais pour le moment cette technique en est encore au stade expérimental. Deux brevets ont été déposés en mars 2011[réf. souhaitée].

Une fois l’exploitation terminée car la ressource épuisée, le forage est refermé avec des bouchons de ciment mesurant entre 50 et 100 m d’épaisseur à plusieurs niveaux différents.

Plusieurs techniques alternatives sont actuellement à l’étude: remplacer l’eau par du gaz comme le propane, stimulation par arc électrique ou chauffage de la roche, mais elles sont encore balbutiantes. Celle qui semble la plus propre, baptisée fracturation exothermique non hydraulique ou fracturation sèche, inventée pour les forages en région Arctiques où l’eau gèle et se fige trop rapidement, n’utilise ni eau, ni explosifs, ni acides, ni solvants, mais de l’hélium chaud.